Melnikov theory to all orders and Puiseux series for subharmonic solutions

نویسندگان

  • Livia Corsi
  • Guido Gentile
چکیده

We study the problem of subharmonic bifurcations for analytic systems in the plane with perturbations depending periodically on time, in the case in which we only assume that the subharmonic Melnikov function has at least one zero. If the order of zero is odd, then there is always at least one subharmonic solution, whereas if the order is even in general other conditions have to be assumed to guarantee the existence of subharmonic solutions. Even when such solutions exist, in general they are not analytic in the perturbation parameter. We show that they are analytic in a fractional power of the perturbation parameter. To obtain a fully constructive algorithm which allows us not only to prove existence but also to obtain bounds on the radius of analyticity and to approximate the solutions within any fixed accuracy, we need further assumptions. The method we use to construct the solution – when this is possible – is based on a combination of the Newton-Puiseux algorithm and the tree formalism. This leads to a graphical representation of the solution in terms of diagrams. Finally, if the subharmonic Melnikov function is identically zero, we show that it is possible to introduce higher order generalisations, for which the same kind of analysis can be carried out.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation curves of subharmonic solutions and Melnikov theory under degeneracies

We study perturbations of a class of analytic two-dimensional autonomous systems with perturbations depending periodically on time; for instance one can imagine a periodically driven or forced system with one degree of freedom. In the first part of the paper, we revisit a problem considered by Chow and Hale on the existence of subharmonic solutions. In the analytic setting, under more general (...

متن کامل

Bifurcation curves of subharmonic solutions

We revisit a problem considered by Chow and Hale on the existence of subharmonic solutions for perturbed systems. In the analytic setting, under more general (weaker) conditions, we prove their results on the existence of bifurcation curves from the nonexistence to the existence of subharmonic solutions. In particular our results apply also when one has degeneracy to first order — i.e. when the...

متن کامل

Bifurcations of Periodic Solutions and Chaos in Josephson System

The Josephson equation is investigated in detail: the existence and bifurcations for harmonic and subharmonic solutions under small perturbations are obtained by using second-order averaging method and subharmonic Melnikov function, and the criterion of existence for chaos is proved by Melnikov analysis; the bifurcation curves about n-subharmonic and heteroclinic orbits and the driving frequenc...

متن کامل

On the complexity of solving ordinary differential equations in terms of Puiseux series

We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given by Grigoriev [10] for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The algori...

متن کامل

A note on the computation of Puiseux series solutions of the Riccatti equation associated with a homogeneous linear ordinary differential equation

We present in this paper a detailed note on the computation of Puiseux series solutions of the Riccatti equation associated with a homogeneous linear ordinary differential equation. This paper is a continuation of [1] which was on the complexity of solving arbitrary ordinary polynomial differential equations in terms of Puiseux series. Introduction LetK = Q(T1, . . . , Tl)[η] be a finite extens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008